ESIEA 2015-2016

4th year course description
1st semester

Susan Loubet
Director of International Relations and Language Teaching
TABLE OF CONTENTS

The 4th year in ESIEA ... 3
Program table ... 5
Core program science and technology ... 6
Core program humanities and corporate culture .. 15
Specific teaching in the elective program Embedded Systems ... 26
Specific teaching in the elective program Information Systems ... 30
The 4th year in ESIEA

The objective of this year of study is to acquire knowledge and skills that will be directly applicable in the workplace in an international and complex environment. Students can tailor their studies to correspond to their talents, personality and personal and professional projects.

In the 4th year, our future engineers begin to specialise in order to be better prepared for their entry into the world of work.

► The students deepen their scientific and technical skills through the technical lectures in the core program: Stochastic processes, digital and combinatorial optimisation, IP networks, systems programming and real time, virtual reality and digital imaging, senior project in digital sciences and technologies.

► They attend specific lectures depending on their elective program:
 - Embedded Systems
 - Information Systems

Embedded systems
Robotics, VHDL programming and random signal, real time OS software labs, control, estimation and identification, design of programmable components, serial transmission.

or

Information systems
Advanced Web programming, mobile programming and database management, software architecture, neural networks, information security and virology, distributed programming, estimation and data analysis.

► They consolidate their general engineering profile with lectures linked to business culture: introduction to sustainable development, introduction to law with an emphasis on labour law, project management and business projects, psychology of human relations, company management and language labs emphasising professional communication.

The core humanities program is completed by lectures and conferences on economy, law and business management. The business administration lecture contains a game simulation over several weeks bringing several student groups into competition.
During the seminar “environment and business strategy” (during a week in a ski resort) people from industry present hot topics in companies which the students develop in team work. The students then present their work to the experts. This is an important and intense moment in the 4th year as the students are in contact with the business world for a whole week.

► The senior scientific project in the 4th year is carried out in teams of 3 or 4 students in partnership with a company or a research laboratory. This multidisciplinary project must be sustainable and must contain an innovative component.

► At the end of the 4th year, each student is ready for his/ her first real work experience and leaves for a technical internship of 4 months. The objective of the internship is to apply the acquired knowledge and skills in their study program to corresponding software or hardware projects in industry.
Program table

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>weighting</th>
<th>credits</th>
<th>work load</th>
<th>hours in class</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEC4BS1</td>
<td>Core program - Science and Technology</td>
<td>15</td>
<td>15</td>
<td>348</td>
<td>180</td>
</tr>
<tr>
<td>MAT4051</td>
<td>Stochastic processes</td>
<td>1,5</td>
<td></td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>MAT4053</td>
<td>Digital and combinatorial optimisation</td>
<td>1,5</td>
<td></td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>INF4032</td>
<td>IP Networks</td>
<td>2</td>
<td></td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>LAB4413</td>
<td>IP Networks lab</td>
<td>2</td>
<td></td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>INF4033</td>
<td>Systems programming and real time</td>
<td>2</td>
<td></td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>PLU4190</td>
<td>Senior project in digital sciences and technology</td>
<td>6</td>
<td></td>
<td>150</td>
<td>90</td>
</tr>
<tr>
<td>HUM4BS1</td>
<td>Core program - Humanities and corporate culture</td>
<td>8</td>
<td>8</td>
<td>214</td>
<td>112,5</td>
</tr>
<tr>
<td>CGI4401</td>
<td>Introduction to sustainable development</td>
<td>1</td>
<td></td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>ENT4113</td>
<td>Introduction to law</td>
<td>1,5</td>
<td></td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>MAN4303</td>
<td>Project management</td>
<td>1,5</td>
<td></td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>MAN4301</td>
<td>Introductory seminar</td>
<td>0,5</td>
<td></td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>HUM4091</td>
<td>Psychology of human relations</td>
<td>1,5</td>
<td></td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>LAN4081AN</td>
<td>English</td>
<td>2</td>
<td></td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>MAN4307</td>
<td>APIC (Actions to Promote Information and Communication)</td>
<td>15</td>
<td></td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>LANXX83XX</td>
<td>2nd foreign language; French for foreigners, reinforced</td>
<td></td>
<td></td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>FSE4BS1</td>
<td>Elective program - Embedded Systems</td>
<td>7</td>
<td>7</td>
<td>154</td>
<td>54</td>
</tr>
<tr>
<td>SYS4041</td>
<td>Robotics</td>
<td>2,5</td>
<td></td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>SYS4042</td>
<td>VHDL programming</td>
<td>2,5</td>
<td></td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>SIG4141</td>
<td>Random signal</td>
<td>2</td>
<td></td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>FSI4BS1</td>
<td>Elective program - Information Systems</td>
<td>7</td>
<td>7</td>
<td>154</td>
<td>54</td>
</tr>
<tr>
<td>INF4041</td>
<td>Advanced Web Programming</td>
<td>2,5</td>
<td></td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>INF4042</td>
<td>Mobile Programming</td>
<td>2,5</td>
<td></td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>INF4040</td>
<td>Database management</td>
<td>2</td>
<td></td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>716</td>
</tr>
</tbody>
</table>
Core program: Science and Technology

MAT4051 STOCHASTIC PROCESSES

4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
1.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
This course is an introduction to the theory of stochastic processes and queuing and queuing networks. Its objectives are: understanding and mastering the key models on which these theories are based in order to apply them, and practicing modelling and simulation of these tools through real-life problems. It is an opening to jobs in the fields of signals and systems, project management, corporate organisation and management, public health, design and dimensioning of computing networks, economics, biology, etc.

PROGRAM:
Chapter I. Basic skills on the theory of random functions
- Concept of random functions
- Classification of random functions – deterministic and non deterministic processes
- Distribution law of random functions
Stochastic independency
- Characteristics of random functions: mathematic expectancy, variance, correlation function
- Empirical determining (experimental) of random function characteristics
- Calculation of random function characteristics transformed according to the initial ones
- Stochastic integrals, stochastic derivative
- Random function addition: mutual correlation function
- Applications

Chapter II. Markov chains and process
- Markov chains (discrete time)
- Homogeneous Markov chains
- Transition probabilities
- Matrix associated with a Markov chain
- Chapman – Kolmogorov equations
- Probability distribution after n transitions
- State classification in a Markov chain
- Set of closed states - absorbing state
- Irreducible chain
- Transitory states – recurring states
- Periodicity
- Cyclical subclasses
- Asymptotic study
- Permanent regime
- Ergodicity
- Boundary theorems for recurring aperiodic chains
- Boundary theorems for transitory states
- Absorption probability
- Martingales
- Non homogeneous Markov chains
- Markov’s process (continuous time)
- Applications

Chapter III. Random Gaussian process - stationary independent increments
- Random Gaussian process
- Process of independent growth
- Process of independent homogeneous growth
- Brownian motion – Wiener’s process - Martingales
- Gaussian white noise
- Applications

Chapter IV. Poisson’s process
- Poisson’s process with constant intensity (or homogeneous process)
- Poisson’s process with variable intensity (or non homogeneous process)
- Renewing process
- Regenerative process
- Applications

Chapter V. Queuing
- Introduction
- Queuing with only one server
- The M/M/1 model
- The M/M/1/c model
- Queuing with several servers
- The M/M/s model
- The M/M/s/c model and systems without queuing
- Queuing networks
PREREQUISITES:
Fundamentals of calculus, Dirac’s distribution and integral transforms (Fourier and Z),
Fundamentals of matrix algebra, basic concepts in graph theory, 3rd year course
probability, elements of algorithms and programming under Mathematica.

PEDAGOGICAL METHODS:
Courses, projects

EVALUATION METHOD:
Written exam, project report

MATERIAL:
Photocopies

BIBLIOGRAPHY:
Samuel Carlin, A first course in stochastic processes, Academic Press
Daniel Carton, Processus aléatoires utilisés en Recherche opérationnelle, Masson
Philippe Chrétienne et Robert faure, Processus stochastiques, leurs graphes, leurs
usages, Gauthier – Villars
J. M. Hellary et R. Pedro, Recherche opérationnelle, Travaux dirigés, Hermann,
Collection Méthodes
Harald Kramer and M. R. Leadbetter, Stationary and related stochastic processes, John
Wiley
Mario Lefebre, Processus stochastiques appliqués, Hermann Editeurs
Hélène Ventsel, Théorie des probabilités, Editions Mir, Moscou

MAT4053 DIGITAL AND COMBINATORIAL OPTIMISATION
4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
1.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Acquiring basic algorithmic and mathematical tools in digital and combination
optimisation. Modelling and solving an optimisation problem without constraints
(equality or inequality constraints) with Lagrange or Kuhn-Tucker multipliers, but also
(in case of Lagrangian duality) being able to go to the next step in the set up of non linear digital optimisation without constraints.

Modelling a problem, a concrete situation in the form of a linear program or standard formulation. Implementing the simplex method.

PROGRAM:
- Digital and combination optimisation
- Optimisation issue (digital and discrete)
- Continuous unidimensional optimisation
- Multi-dimensional optimisation
 1. Gradient methods
 2. Newton methods
- Linear programming (simplex algorithm)
- Application of linear programming to the flows and transport issue.

PREREQUISITES:
• Resolution of linear systems either by hand (for small numbers), or with the standard Gauss elimination algorithm. Many exercises
• Matrix notations, mastering the correspondence between a matrix expression and its developed expression. Checking the matrix expression relevance by inspection of the matrix dimension or vectors. Exercises.
• Square matrix determinant, concept of a regular matrix, singular matrix; importance towards linear system resolution. Exercises.
• Linear dependency and linear independency, rank of a matrix; inverse of a matrix
• Concept of half-defined and defined matrix positivity, link with the intrinsic value for a real symmetric matrix (important and useful concept for the set up of real function convexity with several variables). Exercises.

PEDAGOGICAL METHODS:
Lecture, labs, computer labs

EVALUATION METHOD:
Written exam, project report

MATERIAL:
Photocopies

BIBLIOGRAPHY:

INF4032 IP NETWORKS
4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
2.0 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Following the course in 3rd year, this course aims to rise in the layers in the OSI model to reach layer 7 and to work on historical protocols such as HTTP and dynamic routing.
List IPv6 contributions
Understand the RFC description of a historical protocol.
Work on existing examples of this protocol.
Work on systems of distributed files.
Explain the functioning of the main algorithms in dynamic routing.

PROGRAM:
1) TCP/ IP review
 - IPv4 addressing
 - Reference models
 - ARP, ICMP, IP
2) IPv6
- Addressing
- Address construction
- Mobility
- Security
3) A historical HTTP protocol
 - Work on different RFC examples
4) Systems of distributed files
 - Understand the functioning
 - Know how to use them
5) Dynamic routing
 - Static routing review
 - Dynamic algorithm
6) Introduction to network security

PREREQUISITES:
IP networks course (INF3037)

PEDAGOGICAL METHODS:
Lectures

EVALUATION METHOD:
Final examination

MATERIAL:
Photocopies, Moodle, Beamer

BIBLIOGRAPHY:
Pujolle Guy - Les réseaux (édition 2014) - Eyrolles

LAB4413 IP NETWORKS LAB
4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
2.0 ECTS, 18 hours on site lectures (12 h in lab, 6 h projects)
Taught in French/ English

OBJECTIVES:
The aim of this module is to apply the notions seen during the course (INF4032).
Configure the network layer of an operating system
Implement a historic protocol
Design an operator network
PROGRAM
Lab 1 : Review TCP/ IP
Lab 2 : IPv6
Lab 3 : HTTP protocol implementation
Lab 4 : Security
Lab 5-6 : Dynamic routing

PREREQUISITES:
IP network course (INF 4032)

PEDAGOGICAL METHODS:
Lab

EVALUATION METHOD:
Project report, steps of validation during the lab

MATERIAL:
Photocopies, Moodle for reports and documents, Beamer

BIBLIOGRAPHY:
Pujolle Guy - Les réseaux (édition 2014) - Eyrolles

INF4033 SYSTEMS PROGRAMMING AND REAL TIME
4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
2.0 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
- Presentation of system programming principles
- Presentation of lowest level functions managed by the operating system(C-system)
- Presentation of the principles of real time programming
- Operate/ modify/ create programs in C using internal functions of the operating system (access to the file system, management of rights, processes, concurrent accesses, sockets, etc.).

PROGRAM:
- Advanced C (compilation review, static and dynamic libraries, parameters, debugging,)
- Access to file systems (handling, access rights, links, special files)
- Process management (creation, management, synchronisation, locks, tubes) and threads (management and mutex)
- IPC (message queues, shared memory zones, semaphores)
- Sockets

PREREQUISITES:
Course operating systems (INF3039 and INF3040)
IP network course (INF3037, LAB 3418, INF4032 and LAB4413).

PEDAGOGICAL METHODS:
Lectures, Lab, Projects, lectures and homework on Moodle

EVALUATION METHOD:
Netquizz (digital questionnaire), Moodle, quizzoodle

MATERIAL:
Beamer, specific software, LibreOffice presentation, Moodle

BIBLIOGRAPHY:

PLU4190 SENIOR PROJECT IN DIGITAL SCIENCES AND TECHNOLOGIES
4th year – 1st semester in Paris-Ivry, Laval
Core program - Science and Technology (TEC4BS1)
6.0 ECTS, 90 hours on site lectures
Taught in French/ English

OBJECTIVES:
The objective is to set up tools, processes and methods necessary for a project by defining the expectations of the project, thinking about its interest, defining the operational framework and the work schedule (continued in S2).
Problematize and delimit the subject
Identify the problems to be solved
Regulate group dynamics
Organize the work
Work in teams

PROGRAM:
In the first semester the students define the project context and reply to the following questions:
- Who does what in the team, roles, responsibilities
- Feasibility study (placed into the context)
Why are we undertaking this project? What is at stake?
- Specifications: what must be done?
- Charter (or quality plan): how do we get organized to get things done
- Planning: when? (the different project steps)
For the most advanced groups a part of the realization is done in the first semester.

PREREQUISITES:
Management course in 2nd and 3rd year.

PEDAGOGICAL METHODS:
Independent work in teams of students who organize themselves with regular follow-up by a project leader

EVALUATION METHOD:
Each student gets an individual mark according to his/her involvement in the project. There is a collective mark for the written report.

MATERIAL:

BIBLIOGRAPHY:
Core program humanities and corporate culture

4th year – 1st semester in Paris-Ivry, Laval
Core program: HUM4BS1 Humanities
8 ECTS/ 112,5 hours on site lectures

CGI4401 INTRODUCTION TO SUSTAINABLE DEVELOPMENT

4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
1.0 ECTS, 12 hours on site lectures
Taught in French/ English

OBJECTIVES:
Acquiring basic knowledge in sustainable development and corporate social responsibility (CSR) necessary for an engineer: main principles, individual and collective issues, legal framework, CSR reporting, French policy in sustainable development and in CSR, enquiries and case studies.
Know how to look for information, have a critical approach and understand the fundamentals in this highly mediatized domain used sometimes only for marketing purposes.

PROGRAM:
Introduction: origin of sustainable development/ notions and definitions/ issues
Chap. 1 : Legal framework of sustainable development : hierarchy of law sources/ CSR creation / international and national frameworks.
Chap. 2: Company reporting on sustainable development: definition and objectives/ sources (international, European, national, by sector)/ published studies, methodological guides).
Chap. 3: French policy in terms of sustainable development and CSR: Ministry of ecology, of sustainable development and of energy/ reports/ the 4 primary priorities of the government since 2014/ the international climate conference in Paris in 2015
Chap. 4: Companies that have an inspiring approach
CSR: situational analysis (results of main studies, barometer and enquiries)/ case studies

PREREQUISITES:
None
This course prepares and enriches the following modules because sustainable development is a link between economy and the social and environmental sector:

* Module ENT4113 – Introduction to law
* Module ENT4110 – Business management

PEDAGOGICAL METHODS:
Lectures, labs, projects, work shops

EVALUATION METHOD:
Oral presentation, report

MATERIAL:
Power point, photocopies, beamer, Internet

BIBLIOGRAPHY:
"Chartes de l’ONU / Règlements et directives Union Européenne / Code du travail / code de commerce : peuvent s’acheter sous forme papier mais en pratique, se consultent sur internet
Guides méthodologiques : peuvent s’acheter sous forme papier mais en pratique se consultent sur internet
Maximilien BRABEC : « Business model vert », éditions Dunod
Muhammad YUNUS (prix nobel de la Paix) : « Pour une économie plus humaine, construire le social-business », éditions JC Lattès
Sylvain DARNIL et Mathieu LE ROUX : « 80 hommes pour changer le monde, entreprendre pour la planète», éditions JC Lattès

WEBOGRAPHIE
http://www.legifrance.gouv.fr
http://www.developpement-durable.gouv.fr/
http://www.toutsurlenvironnement.fr/
http://www.statistiques.developpement-durable.gouv.fr/
http://www.orse.org/
http://www.reportingrse.org/
http://www.csreurope.org/
ENT4113 INTRODUCTION TO LAW

4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
1.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Acquisition of the basic knowledge in labour law necessary for the job of engineer: general principles, individual labour relations, collective labour relations from strikes to social dialogue, job and skill management (GPEC in French) continuing education (FPC in French), special risks in the workplace.

PROGRAM:
Introduction: Notions/ history of labour law/ sources/ labour legislation/ monitoring of labour legislation application
Chap. 1: Individual labour relations: work contract conclusion/ recruiting/ contract terms/ different work contracts/ work contract execution/ End of work relationship
Chap. 2: Collective labour relations: union rights/ trade union presence in companies/ representative staff institutions/ key words
Chap. 4: Job and skill management (GPEC), continuing education (FPC): training plans, educational leave (CIF,), parental leave (CPF)/ skills assessment/ professionalization periods.
Chap. 5: special risks in the workplace: alcohol, drugs, tobacco use in the company/ moral harassment at work/ discrimination/ Intranet, Internet, NTIC, stress at work

PREREQUISITES:
None in legal matters

PEDAGOGICAL METHODS:
Lectures, labs, projects, work shops

EVALUATION METHOD:
Written exam, oral presentation, report

MATERIAL:
Power point, photocopies, beamer, Internet

BIBLIOGRAPHY:
MAN4303 PROJECT MANAGEMENT

4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
1.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Train our students in the areas necessary for careers such as:
- project manager
- sales engineer
Forecast and fixed costs and costs of a project of a public tender until the contracts signature.
Carry out and follow up a project from the contract’s signature until the final delivery to the customer.
Estimate industrial risks related to a project in a probabilistic universe.
Optimize the relations costs vs deadlines. Write an industrial report for a customer.

PROGRAM:
I. Forecasts, planning in a probabilistic universe: study of industrial risks
 I.1 Objectives
 I.2. Collection of industrial data
 I.3. Mathematical modelling
 I.4. Operational implementation
II. Cost handling
 II.1. Data collection
 II.2. The myth of “month x manpower”
 II.3. The reality of “month x manpower”
 II.4. Cost optimization in the GANTT chart
III. Forecast and cost handling
 III.1. Calculation of the sales price of a project
 III.2. Cost follow-up via s curves
 III.3. Treasury and financial costs follow-up
IV. Cost vs deadline optimization in projects
 IV.1. Objectives
 IV.2. New definitions (ND)
 IV.2.1 ND relative to arcs
 IV.2.2 ND relative to costs
 IV.2.3 ND relative to graphs
 IV.3 FORD-FULKERSON algorithm
 IV.4. Operational implementation
Appendix
A.1 EQUANT
A.2 MATRA
A.3 EDCI knowledge control (TOTAL)

PREREQUISITES:
3rd year course MAN3301

PEDAGOGICAL METHODS:
Lectures, projects

EVALUATION METHOD:
Project report

MATERIAL:
Specific software, photocopies

BIBLIOGRAPHY:
None

ENT4002 BUSINESS PROJECT
4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
0.5 ECTS, 6 hours on site lectures
Taught in French/ English

OBJECTIVES:
Prepare interviews and situations encountered with companies during the ESIEA Colloquium.

PROGRAM:
This module is part of the business project in the 3rd year. Students have to present their work done for the colloquium and carry out interviews with companies.

PREREQUISITES:
ENT3113

PEDAGOGICAL METHODS:
Labs, interviews

EVALUATION METHOD:
Interviews
HUM4091 PSYCHOLOGY OF HUMAN RELATIONS

4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
1.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
This module aims to federate and to develop win-win relationships in teams in terms of:
- motivation: understanding the fundamentals of motivation and how to create the conditions to make them last
- change management: understanding natural mechanisms of adaptation to changes
- understanding the richness of individual ways of workings; introduction to tools like Enneagram, Process com,
Learn how to communicate positively with others according to basic rules of a good relationship.
Understand group dynamics – how to say and make disagreements to be said in order to work on them
Look at situations called “situation of changes” with a dynamic and contextual understanding

PROGRAM (extracts):
- Fundamentals of motivation reviewed by Danuel H. Pink: historically (From Maslow to McGregor, Harlow and Deci).
- when the carrot and the stick demotivate
- The company specialists (Drucker, Collins, Hamel, ...)
- Motivation 3.0: introduction with logical levels from R. Dilts (PNL).
- Giving sense, shared vision
- emergence of talents and resources
- Issues and major objectives of change management
- Different steps of a change
- Evaluation of change impacts
- The socio-dynamic diagram of the actors
- Communication and training plan
- Usefulness and applications of the Enneagram model
- Fundamentals: 3 centres, characteristics, archetypes
- What is my archetype? What is my preferred centre? What are my strategies to succeed?
- Motivation of each Enneatype ... with exercices!

PREREQUISITES:
None

PEDAGOGICAL METHODS:
Lectures, interviews, workshops, case studies

EVALUATION METHOD:
Presentation/ defence, participation

MATERIAL:
Beamer, microphone, principle: a theoretical intake explained by concrete cases of projects (risks, mistakes to be avoided, project outcome...)

BIBLIOGRAPHY:
None

LAN4081AN ENGLISH
4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
2.0 ECTS, 21 hours on site lectures
Taught in English

OBJECTIVES:
The objective of this module are to:
- Raise student awareness of the different management methods they will encounter in the world of work.
- raise student awareness of the different methods of selection and recruitment.
At the end of the module, students will be able to:
- produce professional-quality CVs and covering letters targeting specific jobs
- perform confidently during job interviews and when presenting themselves informally
- produce professional-quality, non ambiguous and register appropriate e-mails

PROGRAM:
- Reading articles and watching videos on different management methods
- Reading articles and watching videos on different recruitment methods
- Multiple writing assignments with instructor feedback
- Preparation of application materials
- Preparation of job interviews
- Viewing of examples of 60-second pitches. Preparing and performing individual pitch
- Continued work on professional e-mail writing

PREREQUISITES:
English level B2 according to the Common European Framework of References for Languages (CEFR)

PEDAGOGICAL METHODS:
Lab, lectures and homework on Moodle, interviews, workshops

EVALUATION METHOD:
Homework, interview simulation

MATERIAL:
Beamer, television, DVD, language lab, laptops, photocopies, CDs and DVDs, documents (texts, audios, videos) taken from the Internet
Moodle used to publish course materials and for certain activities

BIBLIOGRAPHY:
Most materials are developed for the specific needs of our students by the English teaching team at ESIEA.

MAN4307 APIC (Actions to Promote Information and Communication)
4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
ECTS, 4,5 hours on site lectures
Taught in French/ English

OBJECTIVES:
During your studies and your professional life, you will have to mobilize your communication talents, either to promote a project in an association, or to convince a jury, or to make a presentation in front of your teachers, or to get an internship or a job, or to carry out a professional mission, etc.
The APIC (Actions to Promote Information and Communication) is one of the modules enabling you to better communicate. It has three objectives:
-1- To give an overall vision, on theoretical and functional aspects of persuasive communication on interpersonal and strategic aspects.
-2- To put your knowledge into practice in order to promote the school during events organised by the public relations department.
-3- To promote the actions of the different school clubs and pedagogical projects (scientific or humanities) carried out by students by giving practical advice.

PROGRAM:
Notions presented:
Theoretical approach of communication techniques
Basic principles of programming
Neurolinguistics
Model of probability, Maslow pyramid, cognitivist theory, different types of perception (emotional and rational)
Basic principles, methods and processes of rhetorics and persuasive communication: writing of a rhetoric speech, factors increasing credibility, formulation principles, influence laws, etc.
The non verbal dimension of communication: attitude, body language and synchronisation.
Useful tips and general factors in communication situations of an “Esiearque”.

PREREQUISITES:
None

PEDAGOGICAL METHODS:
Conferences and projects

EVALUATION METHOD:
Evaluation per semester.
Quantitative and qualitative evaluation (bonus/ malus).
Each student has to perform at least one communication action per semester in the service of his/ her school allowing him/ her to put into practice the techniques.

MATERIAL:
« L’argumentation dans la communication » de Philippe Breton, Collection Repères – La Découverte 2009

BIBLIOGRAPHY:
None
LAN1234FR FRENCH FOR FOREIGNERS

4th year – 1st semester in Paris-Ivry, Laval
Core program - Humanities (HUM4BS1)
2.0 ECTS, 21 hours on site lectures, workshops in language lab
Taught in French

OBJECTIVES:
The objectives are twofold:
- on the one hand, the students acquire a sufficient level in French to be autonomous in its day to day use, particularly in verbal exchanges
- on the other hand, the students learn how to write and present scientific and technical reports in order to facilitate their scientific and technical studies in France.

TARGET COMPETENCES
- to be able to understand and speak in day to day situations
- to be able to write and present a technical or scientific report

PROGRAM:
Workshops on writing of scientific and technical reports
Focus on cultural competency
Study of authentic texts
Understanding of audio and video segments
Speaking about personal or professional issues
Writing about personal or professional issues
Grammar exercises
Vocabulary acquisition
Presentation of personal work orally or in written form
Interactive speaking/ debates
Workshops in the language lab

PREREQUISITES:
B1 level

PEDAGOGICAL METHODS:
Lab, lecture, interviews, workshops

EVALUATION METHOD:
Homework, written and oral exams

MATERIAL:
Beamer, television, DVD, language lab, laptops, photocopies, CDs and DVDs, documents (texts, audios, videos) taken from the Internet

BIBLIOGRAPHY:
Most materials are developed for the specific needs of our students by the French teaching team at ESIEA.
Specific teaching in the elective program
Embedded Systems

4th year – 1st semester
Elective program: FSE4BS1 EMBEDDED SYSTEMS
7.0 ECTS, 54 hours on site lectures
Taught in French

SYS4041 ROBOTICS
4th year – 1st semester
Elective program: FSE4BS1 EMBEDDED SYSTEMS
2,5.0 ECTS, 18 hours on site lectures
Taught in French

OBJECTIVES:
This module is an introduction to robotics. The objectives in terms of knowledge are:
- To know the applications for robotics, existing robotic systems and their features,
- To know the different functions to be performed by a robotic system and the main technologies to achieve them,
- To know the difficulties inherent to mobile and industrial robotics and the main methods to resolve them.
Afterwards these competences are put into practice (workshops) on robotic platforms. Students learn:
- To design and analyse a robotic system,
- To choose its components in order to achieve the expected functions,
- To implement a robotic system and to develop some of its functions.

PROGRAM:
Introductory course to robotics (6 h)
- The different fields of robotics
- General structure of a robot: general structure of the sensors, actuators, controllers, communications, user interfaces.
- Introduction to mobile robotics: mechanical bases, modelling, environment representation, functions to be carried out (perception, localization, navigation, planning, control)
- Introduction to industrial robotics: robot types, performances, modelling of serial robots, patch generation and control.
Lab work (18 h) on robotic platforms
PREREQUISITES:
Algorithms, programming, C language, automatics, basic knowledge in electronics and sensors, motor control

PEDAGOGICAL METHODS:
Lab, lectures, projects

EVALUATION METHOD:
Oral presentation, defence

MATERIAL:
Beamer, robotic platforms for labs, course slides and lab subjects are available on the Moodle

BIBLIOGRAPHY:

SYS4042 VHDL PROGRAMMING
4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSE4BS1 EMBEDDED SYSTEMS
2.5 ECTS, 18 hours on site lectures
Taught in French

OBJECTIVES:
The module introduces students to the characteristics and the development of programmable FPGA type components based on VHDL language.
Students learn to:
- Implement a design (sets of functions) in a FPGA Altera (control display outputs depending on push-button entries)
- Program a FPGA in VHDL with Quartus
- Control the flow of development (FPG)

PROGRAM:
- Presentation of technologies linked to PLD programmable components (FPGA, CPLD, …)
- Learning of VHDL language
- VHDL coding exercises
- Developments of a FPGA on a commercial card (coding, implementation and checking)

PREREQUISITES:
- Digital electronics
- Boolean logic
- Programming

PEDAGOGICAL METHODS:
Lab, lectures, projects

EVALUATION METHOD:
Lab evaluation, written exam

MATERIAL:
Beamer, specific software, Altera card, Power Point

BIBLIOGRAPHY:

SIG4141 RANDOM SIGNAL
4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSE4BS1 EMBEDDED SYSTEMS
2.0 ECTS, 18 hours on site lectures
Taught in French

OBJECTIVES:
In order to understand and design systems using signals as communication systems or measuring systems, it is important to take uncertainty and unknown parameters into account. This requires the use of random signal patterns.
The course covers different types of random modelling, the nature of these random events and processing methods.
The radar example is used for practical applications of the notions explored.

PROGRAM:
Time discrete signals
- definition, existence, weak stationary signal
- filtering, specter, tools of spectral analysis
- examples of Doppler radar: frequency estimation
Estimation
- estimation overview: least squares
- formalization of an estimation problem
- examples (radio-activity: number of events)
Exercices on computer
- frequency estimation of data
- Comparison of simulated performance between the “simple” and the “super resolution” methods.
- frequency estimation, simulation of the estimator’s performance

PREREQUISITES:
Probabilities, deterministic signal, discrete Fourier transform, digital Fourier transform

PEDAGOGICAL METHODS:
Lab, course, lectures and homework on Moodle

EVALUATION METHOD:
Written exam

MATERIAL:
Beamer, specific software, Power Point (photocopies of the slides) and Moodle

BIBLIOGRAPHY:
On Internet :
Probability course from Jean-François Le Gall
"Intuitive Probability and Random Processes Using MATLAB" from Steven Kay
"Éléments de traitement du signal " from G. Baudoin and J.-F. Bercher
"Detection, Estimation, and Modulation Theory" from Harry L. Van Trees
"Fondements théoriques de la radiotechnique statistique"
Specific teaching in the elective program Information Systems

4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSI4BS1 Information Systems
7.0 ECTS, 54 hours on site lectures

INF4041 ADVANCED WEB PROGRAMMING
4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSI4BS1 Information Systems
2.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Describe, define and understand mechanisms which are in most Web-type modern interfaces.

PROGRAM:
I – Basic concepts
HTTP standard presentation
HTML standard presentation
CSS standard presentation
Javascript and language presentation

II Service design
Web architecture: what are the differences between:
- a Web site (presentational, of type esiea.fr/ weakly loaded)
- an application (customized service/ with a medium load)
- a service (service to a lot of people, not accessible by a navigator, ex. amazon, google/ heavy load)

III – Implementation (project)
Presentation of languages/ Web frameworks (in python/ ruby/ Go and associated frameworks, etc…)
Project implementation via development of a small service (architecture, implementation and deployment)
If enough time : Client-Side MVC

PREREQUISITES:
JAVA, SQL, JavaScript, CSS, HTML
PEDAGOGICAL METHODS:
Lab, course

EVALUATION METHOD:
Written exam

MATERIAL:
Beamer, Power Point, Moodle

BIBLIOGRAPHY:

INF4042 MOBILE PROGRAMMING

4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSI4BS1 Information Systems
2.5 ECTS, 18 hours on site lectures
Taught in French/English

OBJECTIVES:
Learn the basics of mobile programming on Android.
Learn the basic tools in order to create a graphical interface on Android.
Understand the life cycles of Activities, the sand box concept, Fragments and Manifest operations.
Understand the meaning of service and implement a basic version.

PROGRAM:
The course focuses on the basics of mobile programming and its paradigms by creating a mobile application which is interfaced with a Web server (output of the INF4041 module).
The tutorials are done on Android.
The course navigates constantly between presentation of the theories involved and practical hands-on application by the students.
The project is based on the students’ ideas after validation by the instructor. It must retrieve data of an API REST and display them on Android using the tools presented in the lab.

PREREQUISITES:
None

PEDAGOGICAL METHODS:
Lab
EVALUATION METHOD:
Project

MATERIAL:
Beamer, Computer, Power Point

BIBLIOGRAPHY:

INF4040 DATABASE MANAGEMENT
4th year – 1st semester in Paris-Ivry, Laval
Elective program: FSI4BS1 Information Systems
2.5 ECTS, 18 hours on site lectures
Taught in French/ English

OBJECTIVES:
Understand the working of a database system and the operating issues, deploy the software and know how to implement DBMs in production.
Students learn:
- To install and configure software for database servers
- To execute a stored procedure for maintenance.
- To understand the functioning of a database server and, an SQL query, input and output mechanisms and CACHES management.
- To know how to set an instance, reviews of SQL and PL/ SQL languages
- To understand the optimization of SQL queries, define indexes and control inputs and outputs
- to know how to adjust data models, optimize schemes with modelling and reverse engineering techniques.

PROGRAM:
Most common SQL-based architecture, query processing, cache management, transactions, concurrent accesses and persistence, isolation levels, increased levels, distributed bases, role of the DBA, user management and data storage management, internal data structure, partitioning, problems of data security, data storage and restoring, high availability, and Disaster Recovery Plans, performance problems as seen by the administrator, performance stability, plans, statistics, expectations, performance problems.
PREREQUISITES:
Minimum knowledge of operating systems, especially Linux/ Unix, notions of DBM and SQL.

PEDAGOGICAL METHODS:
Course, Lab

EVALUATION METHOD:
Written exam, homework

MATERIAL:
Beamer, specific software, Power Point, PDF on Moodle

BIBLIOGRAPHY: